Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pract Neurol ; 24(1): 45-50, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37567761

RESUMO

A previously healthy 27-year-old man was admitted to the acute neurology ward with events involving his face, throat and upper limb, which video telemetry later confirmed were refractory focal seizures. He also had progressive pyramidal features, dysarthria and ataxia. MR scans of the brain identified progressive bilateral basal ganglia abnormalities, consistent with Leigh syndrome. However, extensive laboratory and genetic panels did not give a unifying diagnosis. A skeletal muscle biopsy showed no histopathological abnormalities on routine stains. Sequencing of the entire mitochondrial genome in skeletal muscle identified a well-characterised pathogenic variant (m.10191T>C in MT-ND3; NC_012920.1) at 85% heteroplasmy in skeletal muscle. We discuss the clinical and molecular diagnosis of an adult presenting with Leigh syndrome, which is more commonly a paediatric presentation of mitochondrial disease, and how early recognition of a mitochondrial cause is important to support patient care.


Assuntos
Doença de Leigh , Masculino , Adulto , Humanos , Criança , Doença de Leigh/genética , Mutação , Encéfalo/patologia , Músculo Esquelético/patologia , Ataxia
2.
EMBO Mol Med ; 15(5): e16775, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013609

RESUMO

Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.


Assuntos
Doenças Mitocondriais , Doenças Musculares , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Síndrome , Instabilidade Genômica
3.
BMJ Neurol Open ; 4(2): e000352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518302

RESUMO

Background: Mitochondrial disorders are known to cause diverse neurological phenotypes which cause a diagnostic challenge to most neurologists. Pathogenic polymerase gamma (POLG) variants have been described as a cause of chronic progressive external ophthalmoplegia, which manifests with ptosis, horizontal and vertical eye movement restriction and myopathy. Autosomal dominant progressive external ophthalmoplegia is rarely associated with Parkinsonism responsive to levodopa. Methods: We report a case of a 58-year-old man who presented with an eye movement disorder then Parkinsonism who made his way through the myasthenia then the movement disorder clinic. Results: A diagnostic right tibialis anterior biopsy revealed classical hallmarks of mitochondrial disease, and genetic testing identified compound heterozygous pathogenic gene variants in the POLG gene. The patient was diagnosed with autosomal recessive POLG disease. Conclusions: It is important to maintain a high index of suspicion of pathogenic POLG variants in patients presenting with atypical Parkinsonism and ophthalmoplegia. Patients with POLG-related disease will usually have ptosis, and downgaze is typically preserved until late in the disease. Accurate diagnosis is essential for appropriate prognosis and genetic counselling.

4.
Hum Mol Genet ; 31(12): 2049-2062, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35024855

RESUMO

The SLC25A26 gene encodes a mitochondrial inner membrane carrier that transports S-adenosylmethionine (SAM) into the mitochondrial matrix in exchange for S-adenosylhomocysteine (SAH). SAM is the predominant methyl-group donor for most cellular methylation processes, of which SAH is produced as a by-product. Pathogenic, biallelic SLC25A26 variants are a recognized cause of mitochondrial disease in children, with a severe neonatal onset caused by decreased SAM transport activity. Here, we describe two, unrelated adult cases, one of whom presented with recurrent episodes of severe abdominal pain and metabolic decompensation with lactic acidosis. Both patients had exercise intolerance and mitochondrial myopathy associated with biallelic variants in SLC25A26, which led to marked respiratory chain deficiencies and mitochondrial histopathological abnormalities in skeletal muscle that are comparable to those previously described in early-onset cases. We demonstrate using both mouse and fruit fly models that impairment of SAH, rather than SAM, transport across the mitochondrial membrane is likely the cause of this milder, late-onset phenotype. Our findings associate a novel pathomechanism with a known disease-causing protein and highlight the quests of precision medicine in optimizing diagnosis, therapeutic intervention and prognosis.


Assuntos
Doenças Mitocondriais , S-Adenosil-Homocisteína , Animais , Metilação , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
5.
Neuromuscul Disord ; 31(11): 1186-1193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34325999

RESUMO

Pathogenic variants in mitochondrial DNA (mtDNA) are associated with significant clinical heterogeneity with neuromuscular involvement commonly reported. Non-syndromic presentations of mtDNA disease continue to pose a diagnostic challenge and with genomic testing still necessitating a muscle biopsy in many cases. Here we describe an adult patient who presented with progressive ataxia, neuropathy and exercise intolerance in whom the application of numerous Mendelian gene panels had failed to make a genetic diagnosis. Muscle biopsy revealed characteristic mitochondrial pathology (cytochrome c oxidase deficient, ragged-red fibers) prompting a thorough investigation of the mitochondrial genome. Two heteroplasmic MT-CO2 gene variants (NC_012920.1: m.7887G>A and m.8250G>A) were identified, necessitating single fiber segregation and familial studies - including the biopsy of the patient's clinically-unaffected mother - to demonstrate pathogenicity of the novel m.7887G>A p.(Gly101Asp) variant and establishing this as the cause of the mitochondrial biochemical defects and clinical presentation. In the era of high throughput whole exome and genome sequencing, muscle biopsy remains a key investigation in the diagnosis of patients with non-syndromic presentations of adult-onset mitochondrial disease and fully defining the pathogenicity of novel mtDNA variants.


Assuntos
Ataxia Cerebelar/diagnóstico , Doenças Mitocondriais/diagnóstico , Músculo Esquelético/patologia , Mutação/genética , Sequência de Bases , Biópsia , DNA Mitocondrial , Diagnóstico Diferencial , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma
6.
Neuromuscul Disord ; 30(8): 661-668, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32684384

RESUMO

Mitochondrial DNA (mtDNA)-related diseases often pose a diagnostic challenge and require rigorous clinical and laboratory investigation. Pathogenic variants in the mitochondrial tRNA gene MT-TY, which encodes the tRNATyr, are a rare cause of mitochondrial disease. Here we describe a novel m.5860delTA anticodon variant in the MT-TY gene in a patient who initially presented with features akin to a childhood onset myasthenic syndrome. Using histochemical, immunohistochemical and protein studies we demonstrate that this mutation leads to severe biochemical defects of mitochondrial translation, which is reflected in the early onset and progressive phenotype. This case highlights the clinical overlap between mtDNA-related diseases and other neuromuscular disorders, and demonstrates the potential pitfalls in analysis of next generation sequencing results, given whole exome sequencing of a blood DNA sample failed to make a genetics diagnosis. Muscle biopsy remains an important requirement in the diagnosis of mitochondrial disease and in establishing the pathogenicity of novel mtDNA variants.


Assuntos
DNA Mitocondrial/genética , Miopatias Mitocondriais/diagnóstico , Adolescente , Biópsia , Humanos , Masculino , Mitocôndrias/genética , Miopatias Mitocondriais/genética , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação/genética
7.
Neuromuscul Disord ; 30(4): 346-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32305257

RESUMO

Progressive external ophthalmoplegia is typically associated with single or multiple mtDNA deletions but occasionally mtDNA single nucleotide variants within mitochondrial transfer RNAs (mt-tRNAs) are identified. We report a 34-year-old female sporadic patient with progressive external ophthalmoplegia accompanied by exercise intolerance but neither fixed weakness nor multisystemic involvement. Histopathologically, abundant COX-deficient fibres were present in muscle with immunofluorescence analysis confirming the loss of mitochondrial complex I and IV proteins. Molecular genetic analysis identified a rare heteroplasmic m.15990C>T mt-tRNAPro variant reported previously in a single patient with childhood-onset myopathy. The variant in our patient was restricted to muscle. Single muscle fibre analysis identified higher heteroplasmy load in COX-deficient fibres than COX-normal fibres, confirming segregation of high heteroplasmic load with a biochemical defect. Our case highlights the phenotypic variability typically observed with pathogenic mt-tRNA mutations, whilst the identification of a second case with the m.15990C>T mutation not only confirms pathogenicity but shows that de novo mt-tRNA point mutations can arise in multiple, unrelated patients.


Assuntos
Oftalmoplegia Externa Progressiva Crônica/genética , Oftalmoplegia Externa Progressiva Crônica/fisiopatologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Adulto , Feminino , Humanos , Mutação Puntual
8.
Front Genet ; 11: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158465

RESUMO

Mitochondrial complex I deficiency is associated with a diverse range of clinical phenotypes and can arise due to either mitochondrial DNA (mtDNA) or nuclear gene defects. We investigated two adult patients who exhibited non-syndromic neurological features and evidence of isolated mitochondrial complex I deficiency in skeletal muscle biopsies. The first presented with indolent myopathy, progressive since age 17, while the second developed deafness around age 20 and other relapsing-remitting neurological symptoms since. A novel, likely de novo, frameshift variant in MT-ND6 (m.14512_14513del) and a novel maternally-inherited transversion mutation in MT-ND1 were identified, respectively. Skewed tissue segregation of mutant heteroplasmy level was observed; the mutant heteroplasmy levels of both variants were greater than 70% in muscle homogenate, however, in blood the MT-ND6 variant was undetectable while the mutant heteroplasmy level of the MT-ND1 variant was low (12%). Assessment of complex I assembly by Blue-Native PAGE demonstrated a decrease in fully assembled complex I in the muscle of both cases. SDS-PAGE and immunoblotting showed decreased levels of mtDNA-encoded ND1 and several nuclear encoded complex I subunits in both cases, consistent with functional pathogenic consequences of the identified variants. Pathogenicity of the m.14512_14513del was further corroborated by single-fiber segregation studies.

9.
EMBO Mol Med ; 12(3): e11589, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32107855

RESUMO

Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.


Assuntos
Bezafibrato/farmacologia , Mitocôndrias/metabolismo , Miopatias Mitocondriais/tratamento farmacológico , Humanos , Miopatias Mitocondriais/metabolismo , Biogênese de Organelas
10.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866046

RESUMO

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Doença de Leigh/etiologia , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Alelos , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/patologia , Linhagem , Fenótipo
11.
Neuromuscul Disord ; 29(9): 693-697, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31488384

RESUMO

We report a novel mitochondrial m.4414T>C variant in the mt-tRNAMet (MT-TM) gene in an adult patient with chronic progressive external ophthalmoplegia and myopathy whose muscle biopsy revealed focal cytochrome c oxidase (COX)-deficient and ragged red fibres. The m.4414T>C variant occurs at a strongly evolutionary conserved sequence position, disturbing a canonical base pair and disrupting the secondary and tertiary structure of the mt-tRNAMet. Definitive evidence of pathogenicity is provided by clear segregation of m.4414T>C mutant levels with COX deficiency in single muscle fibres. Interestingly, the variant is present in skeletal muscle at relatively low levels (30%) and undetectable in accessible, non-muscle tissues from the patient and her asymptomatic brother, emphasizing the continuing requirement for a diagnostic muscle biopsy as the preferred tissue for mtDNA genetic investigations of mt-tRNA variants leading to mitochondrial myopathy.


Assuntos
DNA Mitocondrial/genética , Músculo Esquelético/patologia , Oftalmoplegia Externa Progressiva Crônica/genética , RNA de Transferência de Metionina/genética , Idoso , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Músculo Esquelético/metabolismo , Mutação , Índice de Gravidade de Doença
12.
J Clin Med ; 8(6)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167410

RESUMO

Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxia.

13.
Mitochondrion ; 47: 18-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022467

RESUMO

Mitochondrial DNA variants in the MT-TM (mt-tRNAMet) gene are rare, typically associated with myopathic phenotypes. We identified a novel MT-TM variant resulting in prolonged seizures with childhood-onset myopathy, retinopathy, short stature and elevated CSF lactate associated with bilateral basal ganglia changes on neuroimaging. Muscle biopsy confirmed multiple respiratory chain deficiencies and focal cytochrome c oxidase (COX) histochemical abnormalities. Next-generation sequencing of the mitochondrial genome revealed a novel m.4412G>A variant at high heteroplasmy levels in muscle that fulfils all accepted criteria for pathogenicity including segregation within single muscle fibres, thus broadening the genotypic and phenotypic landscape of mitochondrial tRNA-related disease.


Assuntos
Gânglios da Base , DNA Mitocondrial , Miopatias Mitocondriais , Mutação Puntual , RNA Mitocondrial/genética , RNA de Transferência de Metionina/genética , Convulsões , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Criança , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Miopatias Mitocondriais/patologia , Miopatias Mitocondriais/fisiopatologia , RNA Mitocondrial/metabolismo , RNA de Transferência de Metionina/metabolismo , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
14.
Ann Clin Transl Neurol ; 6(3): 515-524, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911575

RESUMO

Objectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in MTFMT. Methods: Retrospective cohort study combining new cases and previously published cases. Results: Thirty-eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty-nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy-four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation: Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.


Assuntos
Variação Estrutural do Genoma/genética , Hidroximetil e Formil Transferases/genética , Doença de Leigh/genética , Doença de Leigh/patologia , Adolescente , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais , Mutação , Prognóstico , Estudos Retrospectivos
16.
Neurol Genet ; 4(4): e256, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30046662

RESUMO

OBJECTIVE: To determine the disease relevance of a novel de novo dominant variant in the SLC25A4 gene, encoding the muscle mitochondrial adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier, identified in a child presenting with a previously unreported phenotype of mild childhood-onset myopathy. METHODS: Immunohistochemical and western blot analysis of the patient's muscle tissue were used to assay for the evidence of mitochondrial myopathy and for complex I-V protein levels. To determine the effect of a putative pathogenic p.Lys33Gln variant on ADP/ATP transport, the mutant protein was expressed in Lactococcus lactis and its transport activity was assessed with fused membrane vesicles. RESULTS: Our data demonstrate that the heterozygous c.97A>T (p.Lys33Gln) SLC25A4 variant is associated with classic muscle biopsy findings of mitochondrial myopathy (cytochrome c oxidase [COX]-deficient and ragged blue fibers), significantly impaired ADP/ATP transport in Lactococcus lactis and decreased complex I, III, and IV protein levels in patient's skeletal muscle. Nonetheless, the expression levels of the total ADP/ATP carrier (AAC) content in the muscle biopsy was largely unaffected. CONCLUSIONS: This report further expands the clinical phenotype of de novo dominant SLC25A4 mutations to a childhood-onset, mild skeletal myopathy, without evidence of previously reported clinical features associated with SLC25A4-associated disease, such as cardiomyopathy, encephalopathy or ophthalmoplegia. The most likely reason for the milder disease phenotype is that the overall AAC expression levels were not affected, meaning that expression of the wild-type allele and other isoforms may in part have compensated for the impaired mutant variant.

17.
Hum Mol Genet ; 27(10): 1743-1753, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518248

RESUMO

LonP1 is a mitochondrial matrix protease whose selective substrate specificity is essential for maintaining mitochondrial homeostasis. Recessively inherited, pathogenic defects in LonP1 have been previously reported to underlie cerebral, ocular, dental, auricular and skeletal anomalies (CODAS) syndrome, a complex multisystemic and developmental disorder. Intriguingly, although classical mitochondrial disease presentations are well-known to exhibit marked clinical heterogeneity, the skeletal and dental features associated with CODAS syndrome are pathognomonic. We have applied whole exome sequencing to a patient with congenital lactic acidosis, muscle weakness, profound deficiencies in mitochondrial oxidative phosphorylation associated with loss of mtDNA copy number and MRI abnormalities consistent with Leigh syndrome, identifying biallelic variants in the LONP1 (NM_004793.3) gene; c.1693T > C predicting p.(Tyr565His) and c.2197G > A predicting p.(Glu733Lys); no evidence of the classical skeletal or dental defects observed in CODAS syndrome patients were noted in our patient. In vitro experiments confirmed the p.(Tyr565His) LonP1 mutant alone could not bind or degrade a substrate, consistent with the predicted function of Tyr565, whilst a second missense [p.(Glu733Lys)] variant had minimal effect. Mixtures of p.(Tyr565His) mutant and wild-type LonP1 retained partial protease activity but this was severely depleted when the p.(Tyr565His) mutant was mixed with the p.(Glu733Lys) mutant, data consistent with the compound heterozygosity detected in our patient. In summary, we conclude that pathogenic LONP1 variants can lead to a classical mitochondrial disease presentations associated with severe biochemical defects in oxidative phosphorylation in clinically relevant tissues.


Assuntos
Proteases Dependentes de ATP/genética , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Transtornos do Crescimento/genética , Luxação Congênita de Quadril/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Osteocondrodisplasias/genética , Anormalidades Dentárias/genética , Biópsia , Linhagem Celular , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/fisiopatologia , Exoma/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/fisiopatologia , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Luxação Congênita de Quadril/metabolismo , Luxação Congênita de Quadril/fisiopatologia , Humanos , Lactente , Doença de Leigh/metabolismo , Doença de Leigh/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/fisiopatologia , Fosforilação Oxidativa , Anormalidades Dentárias/metabolismo , Anormalidades Dentárias/fisiopatologia , Sequenciamento do Exoma
18.
JAMA Neurol ; 75(1): 105-113, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29181510

RESUMO

Importance: Neurologic disorders with isolated symptoms or complex syndromes are relatively frequent among mitochondrial inherited diseases. Recessive RTN4IP1 gene mutations have been shown to cause isolated and syndromic optic neuropathies. Objective: To define the spectrum of clinical phenotypes associated with mutations in RTN4IP1 encoding a mitochondrial quinone oxidoreductase. Design, Setting, and Participants: This study involved 12 individuals from 11 families with severe central nervous system diseases and optic atrophy. Targeted and whole-exome sequencing were performed-at Hospital Angers (France), Institute of Neurology Milan (Italy), Imagine Institute Paris (France), Helmoltz Zentrum of Munich (Germany), and Beijing Genomics Institute (China)-to clarify the molecular diagnosis of patients. Each patient's neurologic, ophthalmologic, magnetic resonance imaging, and biochemical features were investigated. This study was conducted from May 1, 2014, to June 30, 2016. Main Outcomes and Measures: Recessive mutations in RTN4IP1 were identified. Clinical presentations ranged from isolated optic atrophy to severe encephalopathies. Results: Of the 12 individuals in the study, 6 (50%) were male and 6 (50%) were female. They ranged in age from 5 months to 32 years. Of the 11 families, 6 (5 of whom were consanguineous) had a member or members who presented isolated optic atrophy with the already reported p.Arg103His or the novel p.Ile362Phe, p.Met43Ile, and p.Tyr51Cys amino acid changes. The 5 other families had a member or members who presented severe neurologic syndromes with a common core of symptoms, including optic atrophy, seizure, intellectual disability, growth retardation, and elevated lactate levels. Additional clinical features of those affected were deafness, abnormalities on magnetic resonance images of the brain, stridor, and abnormal electroencephalographic patterns, all of which eventually led to death before age 3 years. In these patients, novel and very rare homozygous and compound heterozygous mutations were identified that led to the absence of the protein and complex I disassembly as well as mild mitochondrial network fragmentation. Conclusions and Relevance: A broad clinical spectrum of neurologic features, ranging from isolated optic atrophy to severe early-onset encephalopathies, is associated with RTN4IP1 biallelic mutations and should prompt RTN4IP1 screening in both syndromic neurologic presentations and nonsyndromic recessive optic neuropathies.


Assuntos
Proteínas de Transporte/genética , Doenças do Sistema Nervoso Central/genética , Proteínas Mitocondriais/genética , Mutação/genética , Atrofia Óptica/genética , Adolescente , Adulto , Criança , Pré-Escolar , Saúde da Família , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Músculo Esquelético/patologia , Fenótipo , Adulto Jovem
19.
Sci Rep ; 7(1): 15676, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142257

RESUMO

Isolated Complex I (CI) deficiency is the most commonly observed mitochondrial respiratory chain biochemical defect, affecting the largest OXPHOS component. CI is genetically heterogeneous; pathogenic variants affect one of 38 nuclear-encoded subunits, 7 mitochondrial DNA (mtDNA)-encoded subunits or 14 known CI assembly factors. The laboratory diagnosis relies on the spectrophotometric assay of enzyme activity in mitochondrially-enriched tissue homogenates, requiring at least 50 mg skeletal muscle, as there is no reliable histochemical method for assessing CI activity directly in tissue cryosections. We have assessed a validated quadruple immunofluorescent OXPHOS (IHC) assay to detect CI deficiency in the diagnostic setting, using 10 µm transverse muscle sections from 25 patients with genetically-proven pathogenic CI variants. We observed loss of NDUFB8 immunoreactivity in all patients with mutations affecting nuclear-encoding structural subunits and assembly factors, whilst only 3 of the 10 patients with mutations affecting mtDNA-encoded structural subunits showed loss of NDUFB8, confirmed by BN-PAGE analysis of CI assembly and IHC using an alternative, commercially-available CI (NDUFS3) antibody. The IHC assay has clear diagnostic potential to identify patients with a CI defect of Mendelian origins, whilst highlighting the necessity of complete mitochondrial genome sequencing in the diagnostic work-up of patients with suspected mitochondrial disease.


Assuntos
DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Biópsia , Núcleo Celular/genética , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Feminino , Imunofluorescência , Fluorimunoensaio/métodos , Heterogeneidade Genética , Humanos , Masculino , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Fosforilação Oxidativa
20.
Br J Ophthalmol ; 101(9): 1298-1302, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729369

RESUMO

BACKGROUND/AIM: The rare mitochondrial DNA (mtDNA) variant m.8340G>A has been previously reported in the literature in a single, sporadic case of mitochondrial myopathy. In this report, we aim to investigate the case of a 39-year-old male patient with sensorineural deafness who presented to the eye clinic with nyctalopia, retinal pigmentary changes and bilateral cortical cataracts. METHODS: The patient was examined clinically and investigated with autofluorescence, full-field electroretinography, electro-oculogram and dark adaptometry. Sequencing of the mitochondrial genome in blood and muscle tissue was followed by histochemical and biochemical analyses together with single fibre studies of a muscle biopsy to confirm a mitochondrial aetiology. RESULTS: Electrophysiology, colour testing and dark adaptometry showed significant photoreceptor dysfunction with macular involvement. Sequencing the complete mitochondrial genome revealed a rare mitochondrial tRNALys (MTTK) gene variant-m.8340G>A-which was heteroplasmic in blood (11%) and skeletal muscle (65%) and cosegregated with cytochrome c oxidase-deficient fibres in single-fibre studies. CONCLUSION: We confirm the pathogenicity of the rare mitochondrial m.8340G>A variant the basis of single-fibre segregation studies and its association with an expanded clinical phenotype. Our case expands the phenotypic spectrum of diseases associated with mitochondrial tRNA point mutations, highlighting the importance of considering a mitochondrial diagnosis in similar cases presenting to the eye clinic and the importance of further genetic testing if standard mutational analysis does not yield a result.


Assuntos
DNA Mitocondrial/genética , Células Fotorreceptoras de Vertebrados/patologia , Mutação Puntual , RNA de Transferência de Lisina/genética , Timidina Quinase/genética , Síndromes de Usher/genética , Adulto , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroculografia , Eletrorretinografia , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Imagem Óptica , Succinato Desidrogenase/metabolismo , Síndromes de Usher/diagnóstico , Síndromes de Usher/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...